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The systematic investigation of SU(2) gluon and

ghost Landau gauge propagators on large lattices

was continued [1] in order to receive from first prin-

ciples information on the behavior of these prop-

agators and of the running coupling in the con-

tinuum limit for all momenta q including the in-

frared (IR) region. As in previous investigations

[4] for solving the Gribov problem we assume the

Landau gauge functional to be driven as close as

possible to its global extremum. Employing the

standard Wilson plaquette action we have studied

gluon (D) and ghost (G) propagators for lattice

sizes L4, L = 40, 56, 80, 96, 112 The gluon propa-

gator was computed using NMC(β, L) of order 102

independent Monte Carlo (MC) configurations gen-

erated with the given set of parameters, while the

ghost propagator was calculated only on a smaller

subsets of Nghost(β, L) MC configurations.

We employed very long simulated annealing (SA)

runs followed by overrelaxation (OR) to obtain

gauge copies with a gauge fixing functional close

to its global extremum for each MC configuration.

We show the results for the bare gluon propagator

(Fig. 1) and the bare ghost dressing function (Fig. 2)

for fixed physical volume (aL)4 but varying lattice
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Figure 1: The unrenormalized gluon propagator

D(q2) and its fits according to Eq. (1) for approx-

imately equal physical volume ( (aL)4 ' (9.6fm)4)

but different β-values

scale a. For the gluon propagator we have drawn

also curves obtained from fits with the 6-parameter

formula proposed in [5]

D(q) = C
q4 + A2q2 + B

q6 + Eq4 + Fq2 + G2
(1)

We found that the resulting fit curves nicely cap-

ture the IR turnover of the gluon propagator. The

χ2/dof values are close to unity in most cases.

To obtain the renormalized gluon propagator

Dren(q, µ) = Z̃(a, µ)D(q, a) we apply the normal-

ization condition Dren(µ, µ) = 1/µ2. Since the

fit formula of Eq. (1) nicely works throughout the

whole momentum region we can use it to carry out

the renormalization at any µ. From Fig. 3 and

Fig. 4 we can then conclude also for the renormal-

ized gluon propagator Dren(q2) and the renormal-

ized ghost dressing function Jren(q2) found for var-

ious lattice spacings a(β) to be compatible with the

so-called decoupling solution of Dyson-Schwinger

or functional renormalization group equations (see

[7]). The numerical values, however, of Dren(q2)

and Jren(q2) in the limit q → 0 appear to be β-

or a-dependent. From these plots one can see that

the convergence of the renormalized lattice propaga-

tors / dressing functions in the deep IR momentum
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Figure 2: The unrenormalized ghost dressing func-

tion J(q2) for approximately equal physical volume

( (aL)4 ' (9.6fm)4) but different β-values.
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Figure 4: Renormalized ghost propagator Jren(q2)

at µ = 2.2 GeV ]
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Figure 5: Renormalized gluon propagator Dren(q2)

vs lattice spacing a at µ = 2.2 GeV ]

range to the respective continuum counterpart, that

should be observed for decreasing a(β), is rather

slow. For their direct numerical study near the con-

tinuum limit one has to use rather large β-values

which consequently requires simulations on unreal-

istically huge lattices, which are not accessible to-

day even on most powerful parallel supercomputers.

Instead, we can try to make contact with the contin-

uum limit by extrapolating Dren(q2, a) to the zero-

a limit as done e.g. in [3] for SU(3) and non-zero

temperature. In Fig. 5 we plot the a-dependence of

lattice Dren(q2) for several selected values of q2. We

see the lower the momentum is the less well-defined

the convergence for a → 0 becomes. For getting

reliable numerical values of SU(2) gluon and ghost

propagators in the continuum limit more work is

needed. Although the ghost dressing function J(q2)

has been computed only for a subset of MC configu-

rations, it provided useful quantitative information,

see Fig. 4. Even a single MC configuration, e.g.for

L = 96, already seems to yield a first estimate (a

fast decrease of the statistical fluctuations of J(q2)

with increasing L was first observed for the SU(3)

case in [6]). Our analysis shows that in the deep

IR region Dren(q2) increases with β, and Jren(q2)

decreases.

We have checked whether the differences of prop-

agator values in the deep IR could be compensated

by other systematic effects. From Fig. 6 one can

see that finite-volume effects are small (at least for

β = 2.3) if the linear physical size is a(β)L ' 9.6

fm or even larger. What concerns Gribov copy arti-

facts at β = 2.4 and L = 80 we have compared the

results of two sets of SA+OR gauge fixing simula-

tions: (i) one gauge copy fixing with 9600 SA sweeps

(”SA1 schedule”) (NMC = 314) and (ii) ”best of

two copies” gauge fixing with 12000 SA sweeps each

(”SA2 schedule”) (NMC = 187). For more details

see, e.g., Ref. [4]. SA1 and SA2 results obtained
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Figure 3: Renormalized ghost propagator Jren(q2)

at µ = 2.2 GeV ]

for unrenormalized gluon propagators are plotted in

Fig. 7 . We have found that the differences between

these cases are much smaller than the magnitude

of Gribov copy effects measured in [2] as difference

between results of one-copy SA+OR and one-copy

OR gauge-fixing procedures. Our analysis shows

that further “improvement” of SA schedules could

not change Dren(q2) essentially and hence notice-

0.001 0.01 0.1 1 10 100

q2(GeV2)

0

5

10

D
 [G

eV
-2

]

L=112
L=80
L=56
L=40

Figure 6: Check of systematic finite-volume errors.

The unrenormalized D(q2) computed for β = 2.3

and various L.
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Figure 7: Check of Gribov copy effect. D(q2) for 2

different SA schedules at β = 2.4 and L = 80.
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Figure 8: Running coupling for β = 2.3, β = 2.4

and β = 2.45

able differences of Dren(q2) values in the deep IR

region found for different β-values certainly cannot

be accounted for by the Gribov copy effect.

With the bare gluon (Z(q2)) and ghost (J(q2))

dressing functions at hand one can easily compute

the running coupling

αs(q
2
) =

g2
0

4π
J2

(q2
) Z(q2

).

The dependence of the resulting curves of αs(q
2) on

β or a seems to be rather weak even in the deep IR

momentum region (see Fig. 8).

We conclude that naive multiplicative renormaliz-

ability for the SU(2) Landau gauge gluon and ghost

propagators gets violated in the deep IR region.

Due to the slow convergence of gluon and ghost

renormalized propagators their continuum counter-

parts may strongly differ in the deep IR momen-

tum region from what we have obtained here in

lattice simulations with admissible values of L and

β = 4/g2
0 .

Simulations have been done on the MVS100K su-

percomputer of the Joint Supercomputer Centre

(JSCC, Moscow).
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